Quantum walk is one of the main tools for quantum algorithms. Defined by
analogy to classical random walk, a quantum walk is a time-homogeneous quantum
process on a graph. Both random and quantum walks can be defined either in
continuous or discrete time. But whereas a continuous-time random walk can be
obtained as the limit of a sequence of discrete-time random walks, the two
types of quantum walk appear fundamentally different, owing to the need for
extra degrees of freedom in the discrete-time case.
In this article, I describe a precise correspondence between continuous- and
discrete-time quantum walks on arbitrary graphs. Using this correspondence, I
show that continuous-time quantum walk can be obtained as an appropriate limit
of discrete-time quantum walks. The correspondence also leads to a new
technique for simulating Hamiltonian dynamics, giving efficient simulations
even in cases where the Hamiltonian is not sparse. The complexity of the
simulation is linear in the total evolution time, an improvement over
simulations based on high-order approximations of the Lie product formula. As
applications, I describe a continuous-time quantum walk algorithm for element
distinctness and show how to optimally simulate continuous-time query
algorithms of a certain form in the conventional quantum query model. Finally,
I discuss limitations of the method for simulating Hamiltonians with negative
matrix elements, and present two problems that motivate attempting to
circumvent these limitations.