@article {3413, title = {Observation of a finite-energy phase transition in a one-dimensional quantum simulator}, year = {2023}, month = {10/30/2023}, abstract = {

One of the most striking many-body phenomena in nature is the sudden change of macroscopic properties as the temperature or energy reaches a critical value. Such equilibrium transitions have been predicted and observed in two and three spatial dimensions, but have long been thought not to exist in one-dimensional (1D) systems. Fifty years ago, Dyson and Thouless pointed out that a phase transition in 1D can occur in the presence of long-range interactions, but an experimental realization has so far not been achieved due to the requirement to both prepare equilibrium states and realize sufficiently long-range interactions. Here we report on the first experimental demonstration of a finite-energy phase transition in 1D. We use the simple observation that finite-energy states can be prepared by time-evolving product initial states and letting them thermalize under the dynamics of a many-body Hamiltonian. By preparing initial states with different energies in a 1D trapped-ion quantum simulator, we study the finite-energy phase diagram of a long-range interacting quantum system. We observe a ferromagnetic equilibrium phase transition as well as a crossover from a low-energy polarized paramagnet to a high-energy unpolarized paramagnet in a system of up to 23 spins, in excellent agreement with numerical simulations. Our work demonstrates the ability of quantum simulators to realize and study previously inaccessible phases at finite energy density.

}, url = {https://arxiv.org/abs/2310.19869}, author = {Alexander Schuckert and Or Katz and Lei Feng and Eleanor Crane and Arinjoy De and Mohammad Hafezi and Alexey V. Gorshkov and Christopher Monroe} } @article {3006, title = {Operator Scaling Dimensions and Multifractality at Measurement-Induced Transitions}, journal = {Physical Review Letters}, volume = {128}, year = {2022}, month = {2/11/2022}, abstract = {

Repeated local measurements of quantum many body systems can induce a phase transition in their entanglement structure. These measurement-induced phase transitions (MIPTs) have been studied for various types of dynamics, yet most cases yield quantitatively similar values of the critical exponents, making it unclear if there is only one underlying universality class. Here, we directly probe the properties of the conformal field theories governing these MIPTs using a numerical transfer-matrix method, which allows us to extract the effective central charge, as well as the first few low-lying scaling dimensions of operators at these critical points. Our results provide convincing evidence that the generic and Clifford MIPTs for qubits lie in different universality classes and that both are distinct from the percolation transition for qudits in the limit of large onsite Hilbert space dimension. For the generic case, we find strong evidence of multifractal scaling of correlation functions at the critical point, reflected in a continuous spectrum of scaling dimensions.

}, doi = {10.1103/physrevlett.128.050602}, url = {https://arxiv.org/abs/2107.03393}, author = {Aidan Zabalo and Michael Gullans and Justin H. Wilson and Romain Vasseur and Andreas W. W. Ludwig and Sarang Gopalakrishnan and David A. Huse and J. H. Pixley} } @article {3203, title = {Opportunities and Challenges in Fault-Tolerant Quantum Computation}, year = {2022}, month = {10/28/2022}, abstract = {

I will give an overview of what I see as some of the most important future directions in the theory of fault-tolerant quantum computation. In particular, I will give a brief summary of the major problems that need to be solved in fault tolerance based on low-density parity check codes and in hardware-specific fault tolerance. I will then conclude with a discussion of a possible new paradigm for designing fault-tolerant protocols based on a space-time picture of quantum circuits.

}, keywords = {FOS: Physical sciences, Quantum Physics (quant-ph)}, doi = {10.48550/ARXIV.2210.15844}, url = {https://arxiv.org/abs/2210.15844}, author = {Daniel Gottesman} } @article {3129, title = {Optical conductivity and orbital magnetization of Floquet vortex states}, year = {2022}, month = {4/20/2022}, abstract = {

Motivated by recent experimental demonstrations of Floquet topological insulators, there have been several theoretical proposals for using structured light, either spatial or spectral, to create other properties such as flat band and vortex states. In particular, the generation of vortex states in a massive Dirac fermion insulator irradiated by light carrying nonzero orbital angular momentum (OAM) has been proposed [Kim et al. Phys. Rev. B 105, L081301(2022)]. Here, we evaluate the orbital magnetization and optical conductivity as physical observables for such a system. We show that the OAM of light induces nonzero orbital magnetization and current density. The orbital magnetization density increases linearly as a function of OAM degree. In certain regimes, we find that orbital magnetization density is independent of the system size, width, and Rabi frequency of light. It is shown that the orbital magnetization arising from our Floquet theory is large and can be probed by magnetometry measurements. Furthermore, we study the optical conductivity for various types of electron transitions between different states such as vortex, edge, and bulk that are present in the system. Based on conductance frequency peaks, a scheme for the detection of vortex states is proposed.

}, keywords = {FOS: Physical sciences, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), Other Condensed Matter (cond-mat.other)}, doi = {10.48550/ARXIV.2204.09488}, url = {https://arxiv.org/abs/2204.09488}, author = {Ahmadabadi, Iman and Dehghani, Hossein and Hafezi, Mohammad} } @article {3196, title = {Optimal scaling quantum linear systems solver via discrete adiabatic theorem}, journal = {PRX Quantum}, volume = {3}, year = {2022}, month = {10/7/2022}, pages = {040303}, abstract = {

Recently, several approaches to solving linear systems on a quantum computer have been formulated in terms of the quantum adiabatic theorem for a continuously varying Hamiltonian. Such approaches enabled near-linear scaling in the condition number κ of the linear system, without requiring a complicated variable-time amplitude amplification procedure. However, the most efficient of those procedures is still asymptotically sub-optimal by a factor of log(κ). Here, we prove a rigorous form of the adiabatic theorem that bounds the error in terms of the spectral gap for intrinsically discrete time evolutions. We use this discrete adiabatic theorem to develop a quantum algorithm for solving linear systems that is asymptotically optimal, in the sense that the complexity is strictly linear in κ, matching a known lower bound on the complexity. Our O(κlog(1/ϵ)) complexity is also optimal in terms of the combined scaling in κ and the precision ϵ. Compared to existing suboptimal methods, our algorithm is simpler and easier to implement. Moreover, we determine the constant factors in the algorithm, which would be suitable for determining the complexity in terms of gate counts for specific applications.

}, keywords = {FOS: Physical sciences, Quantum Physics (quant-ph)}, doi = {https://journals.aps.org/prxquantum/pdf/10.1103/PRXQuantum.3.040303}, url = {https://arxiv.org/abs/2111.08152}, author = {Costa, Pedro C. S. and An, Dong and Sanders, Yuval R. and Su, Yuan and Babbush, Ryan and Berry, Dominic W.} } @article {2768, title = {Observation of a prethermal discrete time crystal}, year = {2021}, month = {2/2/2021}, abstract = {

The conventional framework for defining and understanding phases of matter requires thermodynamic equilibrium. Extensions to non-equilibrium systems have led to surprising insights into the nature of many-body thermalization and the discovery of novel phases of matter, often catalyzed by driving the system periodically. The inherent heating from such Floquet drives can be tempered by including strong disorder in the system, but this can also mask the generality of non-equilibrium phases. In this work, we utilize a trapped-ion quantum simulator to observe signatures of a non-equilibrium driven phase without disorder: the prethermal discrete time crystal (PDTC). Here, many-body heating is suppressed not by disorder-induced many-body localization, but instead via high-frequency driving, leading to an expansive time window where non-equilibrium phases can emerge. We observe a number of key features that distinguish the PDTC from its many-body-localized disordered counterpart, such as the drive-frequency control of its lifetime and the dependence of time-crystalline order on the energy density of the initial state. Floquet prethermalization is thus presented as a general strategy for creating, stabilizing and studying intrinsically out-of-equilibrium phases of matter.

}, url = {https://arxiv.org/abs/2102.01695}, author = {Antonis Kyprianidis and Francisco Machado and William Morong and Patrick Becker and Kate S. Collins and Dominic V. Else and Lei Feng and Paul W. Hess and Chetan Nayak and Guido Pagano and Norman Y. Yao and Christopher Monroe} } @article {2805, title = {Observation of measurement-induced quantum phases in a trapped-ion quantum computer}, year = {2021}, month = {6/10/2021}, abstract = {

Many-body open quantum systems balance internal dynamics against decoherence from interactions with an environment. Here, we explore this balance via random quantum circuits implemented on a trapped ion quantum computer, where the system evolution is represented by unitary gates with interspersed projective measurements. As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerent threshold. We probe the \"pure\" phase, where the system is rapidly projected to a deterministic state conditioned on the measurement outcomes, and the \"mixed\" or \"coding\" phase, where the initial state becomes partially encoded into a quantum error correcting codespace. We find convincing evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition clearly emerge.

}, url = {https://arxiv.org/abs/2106.05881}, author = {Crystal Noel and Pradeep Niroula and Daiwei Zhu and Andrew Risinger and Laird Egan and Debopriyo Biswas and Marko Cetina and Alexey V. Gorshkov and Michael Gullans and David A. Huse and Christopher Monroe} } @article {2763, title = {Observation of Stark many-body localization without disorder}, year = {2021}, month = {2/14/2021}, abstract = {

Thermalization is a ubiquitous process of statistical physics, in which details of few-body observables are washed out in favor of a featureless steady state. Even in isolated quantum many-body systems, limited to reversible dynamics, thermalization typically prevails. However, in these systems, there is another possibility: many-body localization (MBL) can result in preservation of a non-thermal state. While disorder has long been considered an essential ingredient for this phenomenon, recent theoretical work has suggested that a quantum many-body system with a uniformly increasing field -- but no disorder -- can also exhibit MBL, resulting in {\textquoteleft}Stark MBL.\&$\#$39; Here we realize Stark MBL in a trapped-ion quantum simulator and demonstrate its key properties: halting of thermalization and slow propagation of correlations. Tailoring the interactions between ionic spins in an effective field gradient, we directly observe their microscopic equilibration for a variety of initial states, and we apply single-site control to measure correlations between separate regions of the spin chain. Further, by engineering a varying gradient, we create a disorder-free system with coexisting long-lived thermalized and nonthermal regions. The results demonstrate the unexpected generality of MBL, with implications about the fundamental requirements for thermalization and with potential uses in engineering long-lived non-equilibrium quantum matter.

}, url = {https://arxiv.org/abs/2102.07250}, author = {W. Morong and F. Liu and P. Becker and K. S. Collins and L. Feng and A. Kyprianidis and G. Pagano and T. You and Alexey V. Gorshkov and C. Monroe} } @article {2926, title = {Optimal scaling quantum linear systems solver via discrete adiabatic theorem}, year = {2021}, month = {11/15/2021}, abstract = {

Recently, several approaches to solving linear systems on a quantum computer have been formulated in terms of the quantum adiabatic theorem for a continuously varying Hamiltonian. Such approaches enabled near-linear scaling in the condition number κ of the linear system, without requiring a complicated variable-time amplitude amplification procedure. However, the most efficient of those procedures is still asymptotically sub-optimal by a factor of log(κ). Here, we prove a rigorous form of the adiabatic theorem that bounds the error in terms of the spectral gap for intrinsically discrete time evolutions. We use this discrete adiabatic theorem to develop a quantum algorithm for solving linear systems that is asymptotically optimal, in the sense that the complexity is strictly linear in κ, matching a known lower bound on the complexity. Our O(κlog(1/ε)) complexity is also optimal in terms of the combined scaling in κ and the precision ε. Compared to existing suboptimal methods, our algorithm is simpler and easier to implement. Moreover, we determine the constant factors in the algorithm, which would be suitable for determining the complexity in terms of gate counts for specific applications.\ 

}, url = {https://arxiv.org/abs/2111.08152}, author = {Pedro C. S. Costa and Dong An and Yuval R. Sanders and Yuan Su and Ryan Babbush and Dominic W. Berry} } @article {2568, title = {On-demand indistinguishable single photons from an efficient and pure source based on a Rydberg ensemble}, year = {2020}, month = {3/4/2020}, abstract = {

Single photons coupled to atomic systems have shown to be a promising platform for developing quantum technologies. Yet a bright on-demand, highly pure and highly indistinguishable single-photon source compatible with atomic platforms is lacking. In this work, we demonstrate such a source based on a strongly interacting Rydberg system. The large optical nonlinearities in a blockaded Rydberg ensemble convert coherent light into a single-collective excitation that can be coherently retrieved as a quantum field. We observe a single-transverse-mode efficiency up to 0.18(2), g(2)=2.0(1.5)\×10\−4, and indistinguishability of 0.982(7), making this system promising for scalable quantum information applications. Accounting for losses, we infer a generation probability up to 0.40(4). Furthermore, we investigate the effects of contaminant Rydberg excitations on the source efficiency. Finally, we introduce metrics to benchmark the performance of on-demand single-photon sources.\ 

}, url = {https://arxiv.org/abs/2003.02202}, author = {Dalia P. Ornelas-Huerta and Alexander N. Craddock and Elizabeth A. Goldschmidt and Andrew J. Hachtel and Yidan Wang and P. Bienias and Alexey V. Gorshkov and Steve L. Rolston and James V. Porto} } @article {2732, title = {One-shot dynamical resource theory}, year = {2020}, month = {12/4/2020}, abstract = {

A fundamental problem in resource theory is to study the manipulation of the resource. Focusing on a general dynamical resource theory of quantum channels, here we consider tasks of one-shot resource distillation and dilution with a single copy of the resource. For any target of unitary channel or pure state preparation channel, we establish a universal strategy to determine upper and lower bounds on rates that convert between any given resource and the target. We show that the rates are related to resource measures based on the channel robustness and the channel hypothesis testing entropy, with regularization factors of the target resource measures. The strategy becomes optimal with converged bounds when the channel robustness is finite and measures of the target resource collapse to the same value. The single-shot result also applies to asymptotic parallel manipulation of channels to obtain asymptotic resource conversion rates. We give several examples of dynamical resources, including the purity, classical capacity, quantum capacity, non-uniformity, coherence, and entanglement of quantum channels. Our results are applicable to general dynamical resource theories with potential applications in quantum communication, fault-tolerant quantum computing, and quantum thermodynamics.

}, url = {https://arxiv.org/abs/2012.02781}, author = {Xiao Yuan and Pei Zeng and Minbo Gao and Qi Zhao} } @article {2456, title = {The operator L{\'e}vy flight: light cones in chaotic long-range interacting systems}, journal = {Phys. Rev. Lett. }, volume = {124}, year = {2020}, month = {7/6/2020}, abstract = {

We propose a generic light cone phase diagram for chaotic long-range r\−α interacting systems, where a linear light cone appears for α\≥d+1/2 in d dimension. Utilizing the dephasing nature of quantum chaos, we argue that the universal behavior of the squared commutator is described by a stochastic model, for which the exact phase diagram is known. We provide an interpretation in terms of the L{\'e}vy flights and show that this suffices to capture the scaling of the squared commutator. We verify these phenomena in numerical computation of a long-range spin chain with up to 200 sites.\ 

}, doi = {https://doi.org/10.1103/PhysRevLett.124.180601}, url = {https://arxiv.org/abs/1909.08646}, author = {Tianci Zhou and Shenglong Xu and Xiao Chen and Andrew Guo and Brian Swingle} } @article {2635, title = {Optical quantum memory with optically inaccessible noble-gas spins}, year = {2020}, month = {7/17/2020}, abstract = {

Optical quantum memories, which store and preserve the quantum state of photons, rely on a coherent mapping of the photonic state onto matter states that are optically accessible. Here we outline a new physical mechanism to map the state of photons onto the long-lived but optically inaccessible collective state of noble-gas spins. The mapping employs the coherent spin-exchange interaction arising from random collisions with alkali vapor. We analyze optimal strategies for high-efficiency storage and retrieval of non-classical light at various parameter regimes. Based on these strategies, we identify feasible experimental conditions for realizing efficient quantum memories with noble-gas spins having hours-long coherence times at room temperature and above

}, url = {https://arxiv.org/abs/2007.08770}, author = {Or Katz and Eran Reches and Roy Shaham and Alexey V. Gorshkov and Ofer Firstenberg} } @article {2632, title = {Optimal control for quantum detectors}, year = {2020}, month = {5/12/2020}, abstract = {

Quantum systems are promising candidates for sensing of weak signals as they can provide unrivaled performance when estimating parameters of external fields. However, when trying to detect weak signals that are hidden by background noise, the signal-to-noise-ratio is a more relevant metric than raw sensitivity. We identify, under modest assumptions about the statistical properties of the signal and noise, the optimal quantum control to detect an external signal in the presence of background noise using a quantum sensor. Interestingly, for white background noise, the optimal solution is the simple and well-known spin-locking control scheme. We further generalize, using numerical techniques, these results to the background noise being a correlated Lorentzian spectrum. We show that for increasing correlation time, pulse based sequences such as CPMG are also close to the optimal control for detecting the signal, with the crossover dependent on the signal frequency. These results show that an optimal detection scheme can be easily implemented in near-term quantum sensors without the need for complicated pulse shaping.

}, url = {https://arxiv.org/abs/2005.05995}, author = {Paraj Titum and Kevin M. Schultz and Alireza Seif and Gregory D. Quiroz and B. D. Clader} } @article {2495, title = {Optimal fermion-to-qubit mapping via ternary trees with applications to reduced quantum states learning}, journal = {Quantum }, volume = {4}, year = {2020}, month = {5/26/2020}, abstract = {

We introduce a fermion-to-qubit mapping defined on ternary trees, where any single Majorana operator on an n-mode fermionic system is mapped to a multi-qubit Pauli operator acting nontrivially on \⌈log3(2n+1)\⌉ qubits. The mapping has a simple structure and is optimal in the sense that it is impossible to construct Pauli operators in any fermion-to-qubit mapping acting nontrivially on less than log3(2n) qubits on average. We apply it to the problem of learning k-fermion reduced density matrix (RDM), a problem relevant in various quantum simulation applications. We show that using the ternary-tree mapping one can determine the elements of all k-fermion RDMs, to precision ϵ, by repeating a single quantum circuit for ≲(2n+1)kϵ\−2 times. This result is based on a method we develop here that allows one to determine the elements of all k-qubit RDMs, to precision ϵ, by repeating a single quantum circuit for ≲3kϵ\−2 times, independent of the system size. This improves over existing schemes for determining qubit RDMs.

}, doi = {https://doi.org/10.22331/q-2020-06-04-276}, url = {https://arxiv.org/abs/1910.10746}, author = {Zhang Jiang and Amir Kalev and Wojciech Mruczkiewicz and Hartmut Neven} } @article {2721, title = {Optimal Measurement of Field Properties with Quantum Sensor Networks}, year = {2020}, month = {11/2/2020}, abstract = {

We consider a quantum sensor network of qubit sensors coupled to a field f(x⃗ ;θ⃗ ) analytically parameterized by the vector of parameters θ⃗ . The qubit sensors are fixed at positions x⃗ 1,\…,x⃗ d. While the functional form of f(x⃗ ;θ⃗ ) is known, the parameters θ⃗\  are not. We derive saturable bounds on the precision of measuring an arbitrary analytic function q(θ⃗ ) of these parameters and construct the optimal protocols that achieve these bounds. Our results are obtained from a combination of techniques from quantum information theory and duality theorems for linear programming. They can be applied to many problems, including optimal placement of quantum sensors, field interpolation, and the measurement of functionals of parametrized fields.

}, url = {https://arxiv.org/abs/2011.01259}, author = {Timothy Qian and Jacob Bringewatt and Igor Boettcher and Przemyslaw Bienias and Alexey V. Gorshkov} } @article {2564, title = {Optimal Protocols in Quantum Annealing and QAOA Problems}, year = {2020}, month = {3/19/2020}, abstract = {

Quantum Annealing (QA) and the Quantum Approximate Optimization Algorithm (QAOA) are two special cases of the following control problem: apply a combination of two Hamiltonians to minimize the energy of a quantum state. Which is more effective has remained unclear. Here we apply the framework of optimal control theory to show that generically, given a fixed amount of time, the optimal procedure has the pulsed (or \"bang-bang\") structure of QAOA at the beginning and end but can have a smooth annealing structure in between. This is in contrast to previous works which have suggested that bang-bang (i.e., QAOA) protocols are ideal. Through simulations of various transverse field Ising models, we demonstrate that bang-anneal-bang protocols are more common. The general features identified here provide guideposts for the nascent experimental implementations of quantum optimization algorithms.

}, url = {https://arxiv.org/abs/2003.08952}, author = {Lucas T. Brady and Christopher L. Baldwin and Aniruddha Bapat and Yaroslav Kharkov and Alexey V. Gorshkov} } @article {2689, title = {Optimal state transfer and entanglement generation in power-law interacting systems}, year = {2020}, month = {10/6/2020}, abstract = {

We present an optimal protocol for encoding an unknown qubit state into a multiqubit Greenberger-Horne-Zeilinger-like state and, consequently, transferring quantum information in large systems exhibiting power-law (1/rα) interactions. For all power-law exponents α between d and 2d+1, where d is the dimension of the system, the protocol yields a polynomial speedup for α\>2d and a superpolynomial speedup for α\≤2d, compared to the state of the art. For all α\>d, the protocol saturates the Lieb-Robinson bounds (up to subpolynomial corrections), thereby establishing the optimality of the protocol and the tightness of the bounds in this regime. The protocol has a wide range of applications, including in quantum sensing, quantum computing, and preparation of topologically ordered states.\ 

}, url = {https://arxiv.org/abs/2010.02930}, author = {Minh C. Tran and Abhinav Deshpande and Andrew Y. Guo and Andrew Lucas and Alexey V. Gorshkov} } @article {2515, title = {Optimal Two-Qubit Circuits for Universal Fault-Tolerant Quantum Computation}, year = {2020}, month = {1/16/2020}, abstract = {

We study two-qubit circuits over the Clifford+CS gate set which consists of Clifford gates together with the controlled-phase gate CS=diag(1,1,1,i). The Clifford+CS gate set is universal for quantum computation and its elements can be implemented fault-tolerantly in most error-correcting schemes with magic state distillation. However, since non-Clifford gates are typically more expensive to perform in a fault-tolerant manner, it is desirable to construct circuits that use few CS gates. In the present paper, we introduce an algorithm to construct optimal circuits for two-qubit Clifford+CS operators. Our algorithm inputs a Clifford+CS operator U and efficiently produces a Clifford+CS circuit for U using the least possible number of CS gates. Because our algorithm is deterministic, the circuit it associates to a Clifford+CS operator can be viewed as a normal form for the operator. We give a formal description of these normal forms as walks over certain graphs and use this description to derive an asymptotic lower bound of 5log(1/epsilon)+O(1) on the number CS gates required to epsilon-approximate any 4x4 unitary matrix.\ 

}, url = {https://arxiv.org/abs/2001.05997}, author = {Andrew N. Glaudell and Neil J. Ross and J. M. Taylor} } @article {2520, title = {Observation of Domain Wall Confinement and Dynamics in a Quantum Simulator}, year = {2019}, month = {12/23/2019}, abstract = {

Confinement is a ubiquitous mechanism in nature, whereby particles feel an attractive force that increases without bound as they separate. A prominent example is color confinement in particle physics, in which baryons and mesons are produced by quark confinement. Analogously, confinement can also occur in low-energy quantum many-body systems when elementary excitations are confined into bound quasiparticles. Here, we report the first observation of magnetic domain wall confinement in interacting spin chains with a trapped-ion quantum simulator. By measuring how correlations spread, we show that confinement can dramatically suppress information propagation and thermalization in such many-body systems. We are able to quantitatively determine the excitation energy of domain wall bound states from non-equilibrium quench dynamics. Furthermore, we study the number of domain wall excitations created for different quench parameters, in a regime that is difficult to model with classical computers. This work demonstrates the capability of quantum simulators for investigating exotic high-energy physics phenomena, such as quark collision and string breaking

}, url = {https://arxiv.org/abs/1912.11117}, author = {W. L. Tan and P. Becker and F. Liu and G. Pagano and K. S. Collins and A. De and L. Feng and H. B. Kaplan and A. Kyprianidis and R. Lundgren and W. Morong and S. Whitsitt and Alexey V. Gorshkov and C. Monroe} } @article {2362, title = {Opportunities for Nuclear Physics \& Quantum Information Science}, year = {2019}, month = {03/13/2019}, abstract = {

his whitepaper is an outcome of the workshop Intersections between Nuclear Physics and Quantum Information held at Argonne National Laboratory on 28-30 March 2018 [www.phy.anl.gov/npqi2018/]. The workshop brought together 116 national and international experts in nuclear physics and quantum information science to explore opportunities for the two fields to collaborate on topics of interest to the U.S. Department of Energy (DOE) Office of Science, Office of Nuclear Physics, and more broadly to U.S. society and industry. The workshop consisted of 22 invited and 10 contributed talks, as well as three panel discussion sessions. Topics discussed included quantum computation, quantum simulation, quantum sensing, nuclear physics detectors, nuclear many-body problem, entanglement at collider energies, and lattice gauge theories.

}, url = {https://arxiv.org/abs/1903.05453}, author = {I. C. Clo{\"e}t and Matthew R. Dietrich and John Arrington and Alexei Bazavov and Michael Bishof and Adam Freese and Alexey V. Gorshkov and Anna Grassellino and Kawtar Hafidi and Zubin Jacob and Michael McGuigan and Yannick Meurice and Zein-Eddine Meziani and Peter Mueller and Christine Muschik and James Osborn and Matthew Otten and Peter Petreczky and Tomas Polakovic and Alan Poon and Raphael Pooser and Alessandro Roggero and Mark Saffman and Brent VanDevender and Jiehang Zhang and Erez Zohar} } @article {2206, title = {Observation of bound state self-interaction in a nano-eV atom collider}, journal = {Nature Communications }, volume = {9}, year = {2018}, month = {2018/11/20}, abstract = {

Quantum mechanical scattering resonances for colliding particles occur when a continuum scattering state couples to a discrete bound state between them. The coupling also causes the bound state to interact with itself via the continuum and leads to a shift in the bound state energy, but, lacking knowledge of the bare bound state energy, measuring this self-energy via the resonance position has remained elusive. Here, we report on the direct observation of self-interaction by using a nano-eV atom collider to track the position of a magnetically-tunable Feshbach resonance through a parameter space spanned by energy and magnetic field. Our system of potassium and rubidium atoms displays a strongly non-monotonic resonance trajectory with an exceptionally large self-interaction energy arising from an interplay between the Feshbach bound state and a different, virtual bound state at a fixed energy near threshold.

}, doi = {https://doi.org/10.1038/s41467-018-07375-8}, url = {https://arxiv.org/abs/1807.01174}, author = {Ryan Thomas and Matthew Chilcott and Eite Tiesinga and Amita B. Deb and Niels Kj{\ae}rgaard} } @article {2060, title = {Observation of three-photon bound states in a quantum nonlinear medium}, journal = {Science}, volume = {359}, year = {2018}, month = {2018/02/16}, pages = {783-786}, abstract = {

Bound states of massive particles, such as nuclei, atoms or molecules, are ubiquitous in nature and constitute the bulk of the visible world around us. In contrast, photons typically only weakly influence each other due to their very weak interactions and vanishing mass. We report the observation of traveling three-photon bound states in a quantum nonlinear medium where the interactions between photons are mediated by atomic Rydberg states. In particular, photon correlation and conditional phase measurements reveal the distinct features associated with three-photon and two-photon bound states. Such photonic trimers and dimers can be viewed as quantum solitons with shape-preserving wavefunctions that depend on the constituent photon number. The observed bunching and strongly nonlinear optical phase are quantitatively described by an effective field theory (EFT) of Rydberg-induced photon-photon interactions, which demonstrates the presence of a substantial effective three-body force between the photons. These observations pave the way towards the realization, studies, and control of strongly interacting quantum many-body states of light.

}, doi = {10.1126/science.aao7293}, url = {http://science.sciencemag.org/content/359/6377/783}, author = {Qi-Yu Liang and Aditya V. Venkatramani and Sergio H. Cantu and Travis L. Nicholson and Michael Gullans and Alexey V. Gorshkov and Jeff D. Thompson and Cheng Chin and Mikhail D. Lukin and Vladan Vuletic} } @article {1836, title = {Optimal and Secure Measurement Protocols for Quantum Sensor Networks}, year = {2018}, month = {2018/03/23}, abstract = {

Studies of quantum metrology have shown that the use of many-body entangled states can lead to an enhancement in sensitivity when compared to product states. In this paper, we quantify the metrological advantage of entanglement in a setting where the quantity to be measured is a linear function of parameters coupled to each qubit individually. We first generalize the Heisenberg limit to the measurement of non-local observables in a quantum network, deriving a bound based on the multi-parameter quantum Fisher information. We then propose a protocol that can make use of GHZ states or spin-squeezed states, and show that in the case of GHZ states the procedure is optimal, i.e., it saturates our bound.

}, doi = {https://doi.org/10.1103/PhysRevA.97.042337}, url = {http://arxiv.org/abs/1607.04646}, author = {Zachary Eldredge and Michael Foss-Feig and Steven L. Rolston and Alexey V. Gorshkov} } @article {2259, title = {Optimal Pure-State Qubit Tomography via Sequential Weak Measurements}, journal = {Phys. Rev. Lett. }, volume = {121}, year = {2018}, abstract = {

The spin-coherent-state positive-operator-valued-measure (POVM) is a fundamental measurement in quantum science, with applications including tomography, metrology, teleportation, benchmarking, and measurement of Husimi phase space probabilities. We prove that this POVM is achieved by collectively measuring the spin projection of an ensemble of qubits weakly and isotropically. We apply this in the context of optimal tomography of pure qubits. We show numerically that through a sequence of weak measurements of random directions of the collective spin component, sampled discretely or in a continuous measurement with random controls, one can approach the optimal bound.

}, doi = {https://doi.org/10.1103/PhysRevLett.121.130404}, url = {https://arxiv.org/abs/1805.01012}, author = {Ezad Shojaee and Christopher S. Jackson and Carlos A. Riofrio and Amir Kalev and Ivan H. Deutsch} } @article {2209, title = {Optimization of photon storage fidelity in ordered atomic arrays}, journal = {New Journal of Physics}, volume = {20}, year = {2018}, month = {2018/08/31}, abstract = {

A major application for atomic ensembles consists of a quantum memory for light, in which an optical state can be reversibly converted to a collective atomic excitation on demand. There exists a well-known fundamental bound on the storage error, when the ensemble is describable by a continuous medium governed by the Maxwell-Bloch equations. The validity of this model can break down, however, in systems such as dense, ordered atomic arrays, where strong interference in emission can give rise to phenomena such as subradiance and \"selective\" radiance. Here, we develop a general formalism that finds the maximum storage efficiency for a collection of atoms with discrete, known positions, and a given spatial mode in which an optical field is sent. As an example, we apply this technique to study a finite two-dimensional square array of atoms. We show that such a system enables a storage error that scales with atom number Na like \∼(logNa)2/N2a, and that, remarkably, an array of just 4\×4 atoms in principle allows for an efficiency comparable to a disordered ensemble with optical depth of around 600.

}, doi = {https://doi.org/10.1088/1367-2630/aadb74}, url = {https://arxiv.org/abs/1710.06312}, author = {M. T. Manzoni and M. Moreno-Cardoner and A. Asenjo-Garcia and J. V. Porto and Alexey V. Gorshkov and D. E. Chang} } @article {1997, title = {Optomechanical approach to controlling the temperature and chemical potential of light}, journal = {Phys. Rev. A 97, 033850}, year = {2018}, month = {2018/05/18}, abstract = {

Massless particles, including photons, are not conserved even at low energies and thus have no chemical potential. However, in driven systems, near equilibrium dynamics can lead to equilibration of photons with a finite number, describable using an effective chemical potential. Here we build upon this general concept with an implementation appropriate for a nonlinear photon-based quantum simulator. We consider how laser cooling of a well-isolated mechanical mode can provide an effective low-frequency bath for the quantum simulator system. We show that the use of auxiliary photon modes, coupled by the mechanical system, enables control of both the chemical potential, by drive frequency, and temperature, by drive amplitude, of the resulting photonic quantum simulator\&$\#$39;s grand canonical ensemble.

}, doi = {https://doi.org/10.1103/PhysRevA.97.033850}, url = {https://arxiv.org/abs/1706.00789}, author = {Chiao-Hsuan Wang and J. M. Taylor} } @article {2255, title = {Orbital quantum magnetism in spin dynamics of strongly interacting magnetic lanthanide atoms}, year = {2018}, abstract = {

Laser cooled lanthanide atoms are ideal candidates with which to study strong and unconventional quantum magnetism with exotic phases. Here, we use state-of-the-art closed-coupling simulations to model quantum magnetism for pairs of ultracold spin-6 erbium lanthanide atoms placed in a deep optical lattice. In contrast to the widely used single-channel Hubbard model description of atoms and molecules in an optical lattice, we focus on the single-site multi-channel spin evolution due to spin-dependent contact, anisotropic van der Waals, and dipolar forces. This has allowed us to identify the leading mechanism, orbital anisotropy, that governs molecular spin dynamics among erbium atoms. The large magnetic moment and combined orbital angular momentum of the 4f-shell electrons are responsible for these strong anisotropic interactions and unconventional quantum magnetism. Multi-channel simulations of magnetic Cr atoms under similar trapping conditions show that their spin-evolution is controlled by spin-dependent contact interactions that are distinct in nature from the orbital anisotropy in Er. The role of an external magnetic field and the aspect ratio of the lattice site on spin dynamics is also investigated.

}, url = {https://arxiv.org/abs/1804.10102}, author = {Ming Li and Eite Tiesinga and Svetlana Kotochigova} } @article {2053, title = {Observation of a Many-Body Dynamical Phase Transition with a 53-Qubit Quantum Simulator}, journal = {Nature}, volume = {551}, year = {2017}, month = {2017/11/29}, pages = {601-604}, abstract = {

A quantum simulator is a restricted class of quantum computer that controls the interactions between quantum bits in a way that can be mapped to certain difficult quantum many-body problems. As more control is exerted over larger numbers of qubits, the simulator can tackle a wider range of problems, with the ultimate limit being a universal quantum computer that can solve general classes of hard problems. We use a quantum simulator composed of up to 53 qubits to study a non-equilibrium phase transition in the transverse field Ising model of magnetism, in a regime where conventional statistical mechanics does not apply. The qubits are represented by trapped ion spins that can be prepared in a variety of initial pure states. We apply a global long-range Ising interaction with controllable strength and range, and measure each individual qubit with near 99\% efficiency. This allows the single-shot measurement of arbitrary many-body correlations for the direct probing of the dynamical phase transition and the uncovering of computationally intractable features that rely on the long-range interactions and high connectivity between the qubits.

}, doi = {10.1038/nature24654}, url = {https://www.nature.com/articles/nature24654}, author = {J. Zhang and G. Pagano and P. W. Hess and A. Kyprianidis and P. Becker and H. Kaplan and Alexey V. Gorshkov and Z. -X. Gong and C. Monroe} } @article {1965, title = {Optimal length of decomposition sequences composed of imperfect gates}, journal = {Quantum Information Processing}, volume = {16}, year = {2017}, month = {2017/03/24}, pages = {123}, abstract = {

Quantum error correcting circuitry is both a resource for correcting errors and a source for generating errors. A balance has to be struck between these two aspects. Perfect quantum gates do not exist in nature. Therefore, it is important to investigate how flaws in the quantum hardware affect quantum computing performance. We do this in two steps. First, in the presence of realistic, faulty quantum hardware, we establish how quantum error correction circuitry achieves reduction in the extent of quantum information corruption. Then, we investigate fault-tolerant gate sequence techniques that result in an approximate phase rotation gate, and establish the existence of an optimal length\ Lopt\ of the length\ L\ of the decomposition sequence. The existence of\ Lopt\ is due to the competition between the increase in gate accuracy with increasing\ L, but the decrease in gate performance due to the diffusive proliferation of gate errors due to faulty basis gates. We present an analytical formula for the gate fidelity as a function of\ L\ that is in satisfactory agreement with the results of our simulations and allows the determination of\ Lopt\ via the solution of a transcendental equation. Our result is universally applicable since gate sequence approximations also play an important role, e.g., in atomic and molecular physics and in nuclear magnetic resonance.

}, issn = {1573-1332}, doi = {10.1007/s11128-017-1571-5}, url = {https://link.springer.com/article/10.1007/s11128-017-1571-5}, author = {Yunseong Nam and R. Bl{\"u}mel} } @article {2151, title = {Optomechanical Analogy for Toy Cosmology with Quantized Scale Factor}, journal = {Entropy}, volume = {19}, year = {2017}, month = {2017/09/12}, chapter = {485}, abstract = {

The simplest cosmology{\^a}\€\”the Friedmann{\^a}\€\“Robertson{\^a}\€\“Walker{\^a}\€\“Lema{\~A}\®tre (FRW) model{\^a}\€\” describes a spatially homogeneous and isotropic universe where the scale factor is the only dynamical parameter. Here we consider how quantized electromagnetic fields become entangled with the scale factor in a toy version of the FRW model. A system consisting of a photon, source, and detector is described in such a universe, and we find that the detection of a redshifted photon by the detector system constrains possible scale factor superpositions. Thus, measuring the redshift of the photon is equivalent to a weak measurement of the underlying cosmology. We also consider a potential optomechanical analogy system that would enable experimental exploration of these concepts. The analogy focuses on the effects of photon redshift measurement as a quantum back-action on metric variables, where the position of a movable mirror plays the role of the scale factor. By working in the rotating frame, an effective Hubble equation can be simulated with a simple free moving mirror.

}, issn = {1099-4300}, doi = {10.3390/e19090485}, url = {http://www.mdpi.com/1099-4300/19/9/485}, author = {Smiga, Joseph A. and J. M. Taylor} } @article {1956, title = {Optomechanically-induced chiral transport of phonons in one dimension}, year = {2017}, month = {2017/01/10}, abstract = {

Non-reciprocal devices, with one-way transport properties, form a key component for isolating and controlling light in photonic systems. Optomechanical systems have emerged as a potential platform for optical non-reciprocity, due to ability of a pump laser to break time and parity symmetry in the system. Here we consider how the non-reciprocal behavior of light can also impact the transport of sound in optomechanical devices. We focus on the case of a quasi one dimensional optical ring resonator with many mechanical modes coupled to light via the acousto-optic effect. The addition of disorder leads to finite diffusion for phonon transport in the material, largely due to elastic backscattering between clockwise and counter-clockwise phonons. We show that a laser pump field, along with the assumption of high quality-factor, sideband-resolved optical resonances, suppresses the effects of disorder and leads to the emergence of chiral diffusion, with direction-dependent diffusion emerging in a bandwidth similar to the phase-matching bandwidth for Brillouin scattering. A simple diagrammatic theory connects the observation of reduced mechanical linewidths directly to the associated phonon diffusion properties, and helps explain recent experimental results.

}, url = {https://arxiv.org/abs/1701.02699}, author = {Xunnong Xu and J. M. Taylor} } @article {2002, title = {Out-of-time-order correlators in finite open systems}, year = {2017}, month = {2017/04/27}, abstract = {

We study out-of-time order correlators (OTOCs) of the form hA\ˆ(t)B\ˆ(0)C\ˆ(t)D\ˆ(0)i for a quantum system weakly coupled to a dissipative environment. Such an open system may serve as a model of, e.g., a small region in a disordered interacting medium coupled to the rest of this medium considered as an environment. We demonstrate that for a system with discrete energy levels the OTOC saturates exponentially \∝ Paie \−t/τi + const to a constant value at t \→ \∞, in contrast with quantum-chaotic systems which exhibit exponential growth of OTOCs. Focussing on the case of a two-level system, we calculate microscopically the decay times τi and the value of the saturation constant. Because some OTOCs are immune to dephasing processes and some are not, such correlators may decay on two sets of parametrically different time scales related to inelastic transitions between the system levels and to pure dephasing processes, respectively. In the case of a classical environment, the evolution of the OTOC can be mapped onto the evolution of the density matrix of two systems coupled to the same dissipative environment.

}, doi = {https://doi.org/10.1103/PhysRevB.97.161114}, url = {https://arxiv.org/abs/1704.08442}, author = {S. V. Syzranov and Alexey V. Gorshkov and V. Galitski} } @article {2005, title = {{O}bservation of {P}rethermalization in {L}ong-{R}ange {I}nteracting {S}pin {C}hains}, year = {2016}, month = {2016/08/02}, abstract = {

Statistical mechanics can predict thermal equilibrium states for most classical systems, but for an isolated quantum system there is no general understanding on how equilibrium states dynamically emerge from the microscopic Hamiltonian. For instance, quantum systems that are near-integrable usually fail to thermalize in an experimentally realistic time scale and, instead, relax to quasi-stationary prethermal states that can be described by statistical mechanics when approximately conserved quantities are appropriately included in a generalized Gibbs ensemble (GGE). Here we experimentally study the relaxation dynamics of a chain of up to 22 spins evolving under a long-range transverse field Ising Hamiltonian following a sudden quench. For sufficiently long-ranged interactions the system relaxes to a new type of prethermal state that retains a strong memory of the initial conditions. In this case, the prethermal state cannot be described by a GGE, but rather arises from an emergent double-well potential felt by the spin excitations. This result shows that prethermalization occurs in a significantly broader context than previously thought, and reveals new challenges for a generic understanding of the thermalization of quantum systems, particularly in the presence of long-range interactions.

}, url = {https://arxiv.org/abs/1608.00681}, author = {B. Neyenhuis and J. Smith and A. C. Lee and J. Zhang and P. Richerme and P. W. Hess and Z. -X. Gong and Alexey V. Gorshkov and C. Monroe} } @article {1822, title = {Observation of Optomechanical Quantum Correlations at Room Temperature}, year = {2016}, month = {2016/05/18}, abstract = {

By shining laser light through a nanomechanical beam, we measure the beam\&$\#$39;s thermally driven vibrations and perturb its motion with optical forces at a level dictated by the Heisenberg measurement-disturbance uncertainty relation. Such quantum backaction is typically difficult to observe at room temperature where the motion driven by optical quantum intensity fluctuations is many orders of magnitude smaller than the thermal motion. We demonstrate a cross-correlation technique to distinguish optically driven motion from thermally driven motion, observing this quantum backaction signature up to room temperature. While it is often difficult to absolutely calibrate optical detection, we use the scale of the quantum correlations, which is determined by fundamental constants, to gauge the size of thermal motion, demonstrating a path towards absolute thermometry with quantum mechanically calibrated ticks.

}, url = {http://arxiv.org/abs/1605.05664}, author = {T. P. Purdy and K. E. Grutter and K. Srinivasan and J. M. Taylor} } @article {1533, title = {Optimal ancilla-free Clifford+T approximation of z-rotations}, journal = {Quantum Information and Computation}, volume = {16}, year = {2016}, pages = {901-953}, abstract = {

We consider the problem of decomposing arbitrary single-qubit z-rotations into ancilla-free Clifford+T circuits, up to given epsilon. We present a new efficient algorithm for solving this problem optimally, i.e., for finding the shortest possible circuit whatsoever for the given problem instance. The algorithm requires a factoring oracle (such as a quantum computer). Even in the absence of a factoring oracle, the algorithm is still near-optimal: In this case, it finds a solution of T-count m + O(log(log(1/epsilon))), where m is the T-count of the second-to-optimal solution. In the typical case, this yields circuit decompositions of T-count 3log_2(1/epsilon) + O(log(log(1/epsilon))).

}, url = {http://arxiv.org/abs/1403.2975v2}, author = {Neil J. Ross and Peter Selinger} } @article {1715, title = {Optimal and asymptotically optimal NCT reversible circuits by the gate types}, journal = {Quantum Information \& Computation}, volume = {16}, year = {2016}, month = {2016/08/23}, pages = {1096-1112}, abstract = {

We report optimal and asymptotically optimal reversible circuits composed of NOT, CNOT, and Toffoli (NCT) gates, keeping the count by the subsets of the gate types used. This study fine tunes the circuit complexity figures for the realization of reversible functions via reversible NCT circuits. An important consequence is a result on the limitation of the use of the T-count quantum circuit metric popular in applications.

}, url = {http://arxiv.org/abs/1602.02627}, author = {Dmitri Maslov} } @article {1554, title = {Optimal quantum algorithm for polynomial interpolation}, journal = {43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)}, volume = {55}, year = {2016}, month = {2016/03/01}, pages = {16:1--16:13}, abstract = {

We consider the number of quantum queries required to determine the coefficients of a degree-d polynomial over GF(q). A lower bound shown independently by Kane and Kutin and by Meyer and Pommersheim shows that d/2+1/2 quantum queries are needed to solve this problem with bounded error, whereas an algorithm of Boneh and Zhandry shows that d quantum queries are sufficient. We show that the lower bound is achievable: d/2+1/2 quantum queries suffice to determine the polynomial with bounded error. Furthermore, we show that d/2+1 queries suffice to achieve probability approaching 1 for large q. These upper bounds improve results of Boneh and Zhandry on the insecurity of cryptographic protocols against quantum attacks. We also show that our algorithm\&$\#$39;s success probability as a function of the number of queries is precisely optimal. Furthermore, the algorithm can be implemented with gate complexity poly(log q) with negligible decrease in the success probability.

}, isbn = {978-3-95977-013-2}, issn = {1868-8969}, doi = {http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.16}, url = {http://arxiv.org/abs/1509.09271}, author = {Andrew M. Childs and Wim van Dam and Shih-Han Hung and Igor E. Shparlinski} } @article {1235, title = {Optimal state discrimination and unstructured search in nonlinear quantum mechanics}, journal = {Physical Review A}, volume = {93}, year = {2016}, month = {2016/02/11}, pages = {022314}, abstract = { Nonlinear variants of quantum mechanics can solve tasks that are impossible in standard quantum theory, such as perfectly distinguishing nonorthogonal states. Here we derive the optimal protocol for distinguishing two states of a qubit using the Gross-Pitaevskii equation, a model of nonlinear quantum mechanics that arises as an effective description of Bose-Einstein condensates. Using this protocol, we present an algorithm for unstructured search in the Gross-Pitaevskii model, obtaining an exponential improvement over a previous algorithm of Meyer and Wong. This result establishes a limitation on the effectiveness of the Gross-Pitaevskii approximation. More generally, we demonstrate similar behavior under a family of related nonlinearities, giving evidence that the ability to quickly discriminate nonorthogonal states and thereby solve unstructured search is a generic feature of nonlinear quantum mechanics. }, doi = {10.1103/PhysRevA.93.022314}, url = {http://arxiv.org/abs/1507.06334}, author = {Andrew M. Childs and Joshua Young} } @article {1909, title = {Optimized tomography of continuous variable systems using excitation counting}, journal = {Physical Review A}, volume = {94}, year = {2016}, month = {2016/11/21}, pages = {052327}, abstract = {

We propose a systematic procedure to optimize quantum state tomography protocols for continuous variable systems based on excitation counting preceded by a displacement operation. Compared with conventional tomography based on Husimi or Wigner function measurement, the excitation counting approach can significantly reduce the number of measurement settings. We investigate both informational completeness and robustness, and provide a bound of reconstruction error involving the condition number of the sensing map. We also identify the measurement settings that optimize this error bound, and demonstrate that the improved reconstruction robustness can lead to an order-of-magnitude reduction of estimation error with given resources. This optimization procedure is general and can incorporate prior information of the unknown state to further simplify the protocol.

}, doi = {10.1103/PhysRevA.94.052327}, url = {http://link.aps.org/doi/10.1103/PhysRevA.94.052327}, author = {Shen, Chao and Heeres, Reinier W. and Reinhold, Philip and Jiang, Luyao and Yi-Kai Liu and Schoelkopf, Robert J. and Jiang, Liang} } @article {1604, title = {Observation of optomechanical buckling phase transitions}, year = {2015}, month = {2015/10/16}, abstract = {

Correlated phases of matter provide long-term stability for systems as diverse as solids, magnets, and potential exotic quantum materials. Mechanical systems, such as relays and buckling transition spring switches can yield similar stability by exploiting non-equilibrium phase transitions. Curiously, in the optical domain, observations of such phase transitions remain elusive. However, efforts to integrate optical and mechanical systems -- optomechanics -- suggest that a hybrid approach combining the quantum control of optical systems with the engineerability of mechanical systems may provide a new avenue for such explorations. Here we report the first observation of the buckling of an optomechanical system, in which transitions between stable mechanical states corresponding to both first- and second-order phase transitions are driven by varying laser power and detuning. Our results enable new applications in photonics and, given rapid progress in pushing optomechanical systems into the quantum regime, the potential for explorations of quantum phase transitions.

}, url = {http://arxiv.org/abs/1510.04971v1}, author = {Haitan Xu and Utku Kemiktarak and Jingyun Fan and Stephen Ragole and John Lawall and J. M. Taylor} } @article {1329, title = {Optical Control of Donor Spin Qubits in Silicon}, journal = {Physical Review B}, volume = {92}, year = {2015}, month = {2015/11/11}, pages = {195411}, abstract = {We show how to achieve optical, spin-selective transitions from the ground state to excited orbital states of group-V donors (P, As, Sb, Bi) in silicon. We consider two approaches based on either resonant, far-infrared (IR) transitions of the neutral donor or resonant, near-IR excitonic transitions. For far-IR light, we calculate the dipole matrix elements between the valley-orbit and spin-orbit split states for all the goup-V donors using effective mass theory. We then calculate the maximum rate and amount of electron-nuclear spin-polarization achievable through optical pumping with circularly polarized light. We find this approach is most promising for Bi donors due to their large spin-orbit and valley-orbit interactions. Using near-IR light, spin-selective excitation is possible for all the donors by driving a two-photon $\Lambda$-transition from the ground state to higher orbitals with even parity. We show that externally applied electric fields or strain allow similar, spin-selective $\Lambda$-transition to odd-parity excited states. We anticipate these results will be useful for future spectroscopic investigations of donors, quantum control and state preparation of donor spin qubits, and for developing a coherent interface between donor spin qubits and single photons. }, doi = {10.1103/PhysRevB.92.195411}, url = {http://arxiv.org/abs/1507.07929}, author = {Michael Gullans and J. M. Taylor} } @article {1532, title = {Optimal ancilla-free Clifford+V approximation of z-rotations}, journal = {Quantum Information and Computation}, volume = {15}, year = {2015}, month = {2015/03/06}, pages = {932-950}, abstract = { We describe a new efficient algorithm to approximate z-rotations by ancilla-free Clifford+V circuits, up to a given precision epsilon. Our algorithm is optimal in the presence of an oracle for integer factoring: it outputs the shortest Clifford+V circuit solving the given problem instance. In the absence of such an oracle, our algorithm is still near-optimal, producing circuits of V-count m + O(log(log(1/epsilon))), where m is the V-count of the third-to-optimal solution. A restricted version of the algorithm approximates z-rotations in the Pauli+V gate set. Our method is based on previous work by the author and Selinger on the optimal ancilla-free approximation of z-rotations using Clifford+T gates and on previous work by Bocharov, Gurevich, and Svore on the asymptotically optimal ancilla-free approximation of z-rotations using Clifford+V gates. }, url = {http://arxiv.org/abs/1409.4355v2}, author = {Neil J. Ross} } @article {1282, title = {Optimization of collisional Feshbach cooling of an ultracold nondegenerate gas}, journal = {Physical Review A}, volume = {91}, year = {2015}, month = {2015/04/20}, pages = {043626}, abstract = { We optimize a collision-induced cooling process for ultracold atoms in the nondegenerate regime. It makes use of a Feshbach resonance, instead of rf radiation in evaporative cooling, to selectively expel hot atoms from a trap. Using functional minimization we analytically show that for the optimal cooling process the resonance energy must be tuned such that it linearly follows the temperature. Here, optimal cooling is defined as maximizing the phase-space density after a fixed cooling duration. The analytical results are confirmed by numerical Monte-Carlo simulations. In order to simulate more realistic experimental conditions, we show that background losses do not change our conclusions, while additional non-resonant two-body losses make a lower initial resonance energy with non-linear dependence on temperature preferable. }, doi = {10.1103/PhysRevA.91.043626}, url = {http://arxiv.org/abs/1412.8473v1}, author = {Marlon Nuske and Eite Tiesinga and L. Mathey} } @article {1333, title = {Optomechanical reference accelerometer}, journal = {Metrologia}, volume = {52}, year = {2015}, month = {2015/09/08}, pages = {654}, abstract = {

We present an optomechanical accelerometer with high dynamic range, high bandwidth and read-out noise levels below 8 ${\mu}$g/$\sqrt{\mathrm{Hz}}$. The straightforward assembly and low cost of our device make it a prime candidate for on-site reference calibrations and autonomous navigation. We present experimental data taken with a vacuum sealed, portable prototype and deduce the achieved bias stability and scale factor accuracy. Additionally, we present a comprehensive model of the device physics that we use to analyze the fundamental noise sources and accuracy limitations of such devices.

}, doi = {10.1088/0026-1394/52/5/654}, url = {http://iopscience.iop.org/article/10.1088/0026-1394/52/5/654/meta;jsessionid=C2B417A5CD50B9B57EE14C78E1783802.ip-10-40-1-105}, author = {Oliver Gerberding and Felipe Guzman Cervantes and John Melcher and Jon R. Pratt and J. M. Taylor} } @article {1512, title = {Oracles with Costs}, journal = {10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015)}, volume = {44}, year = {2015}, month = {2015/02/07}, pages = {1-26}, abstract = { While powerful tools have been developed to analyze quantum query complexity, there are still many natural problems that do not fit neatly into the black box model of oracles. We create a new model that allows multiple oracles with differing costs. This model captures more of the difficulty of certain natural problems. We test this model on a simple problem, Search with Two Oracles, for which we create a quantum algorithm that we prove is asymptotically optimal. We further give some evidence, using a geometric picture of Grover{\textquoteright}s algorithm, that our algorithm is exactly optimal. }, isbn = {978-3-939897-96-5}, issn = {1868-8969}, doi = {10.4230/LIPIcs.TQC.2015.1}, url = {http://arxiv.org/abs/1502.02174}, author = {Shelby Kimmel and Cedric Yen-Yu Lin and Han-Hsuan Lin} } @article {1342, title = {Optical detection of radio waves through a nanomechanical transducer}, journal = {Nature}, volume = {507}, year = {2014}, month = {2014/3/5}, pages = {81 - 85}, abstract = {Low-loss transmission and sensitive recovery of weak radio-frequency (rf) and microwave signals is an ubiquitous technological challenge, crucial in fields as diverse as radio astronomy, medical imaging, navigation and communication, including those of quantum states. Efficient upconversion of rf-signals to an optical carrier would allow transmitting them via optical fibers dramatically reducing losses, and give access to the mature toolbox of quantum optical techniques, routinely enabling quantum-limited signal detection. Research in the field of cavity optomechanics has shown that nanomechanical oscillators can couple very strongly to either microwave or optical fields. An oscillator accommodating both functionalities would bear great promise as the intermediate platform in a radio-to-optical transduction cascade. Here, we demonstrate such an opto-electro-mechanical transducer utilizing a high-Q nanomembrane. A moderate voltage bias (<10V) is sufficient to induce strong coupling between the voltage fluctuations in a rf resonance circuit and the membrane{\textquoteright}s displacement, which is simultaneously coupled to light reflected off its metallized surface. The circuit acts as an antenna; the voltage signals it induces are detected as an optical phase shift with quantum-limited sensitivity. The half-wave voltage is in the microvolt range, orders of magnitude below that of standard optical modulators. The noise added by the membrane is suppressed by the electro-mechanical cooperativity C~6800 and has a temperature of 40mK, far below 300K where the entire device is operated. This corresponds to a sensitivity limit as low as 5 pV/Hz^1/2, or -210dBm/Hz in a narrow band around 1 MHz. Our work introduces an entirely new approach to all-optical, ultralow-noise detection of classical electronic signals, and sets the stage for coherent upconversion of low-frequency quantum signals to the optical domain. }, doi = {10.1038/nature13029}, url = {http://arxiv.org/abs/1307.3467v2}, author = {T. Bagci and A. Simonsen and S. Schmid and L. G. Villanueva and E. Zeuthen and J. Appel and J. M. Taylor and A. S{\o}rensen and K. Usami and A. Schliesser and E. S. Polzik} } @article {1865, title = {Optimal entanglement-assisted one-shot classical communication}, journal = {Physical Review A}, volume = {87}, year = {2013}, month = {2013/06/03}, pages = {062301}, abstract = {

The\ one-shot success probability\ of a noisy classical channel for transmitting one classical bit is the optimal probability with which the bit can be successfully sent via a single use of the channel. Prevedel\ et al.\ [Phys. Rev. Lett.106, 110505 (2011)] recently showed that for a specific channel, this quantity can be increased if the parties using the channel share an entangled quantum state. In this paper, we characterize the optimal entanglement-assisted protocols in terms of the radius of a set of operators associated with the channel. This characterization can be used to construct optimal entanglement-assisted protocols for a given classical channel and to prove the limits of such protocols. As an example, we show that the Prevedel\ et al.\ protocol is optimal for two-qubit entanglement. We also prove some tight upper bounds on the improvement that can be obtained from quantum and nonsignaling correlations.

}, doi = {10.1103/PhysRevA.87.062301}, url = {http://link.aps.org/doi/10.1103/PhysRevA.87.062301}, author = {Hemenway, Brett and Carl Miller and Shi, Yaoyun and Wootters, Mary} } @inbook {1863, title = {Optimal robust self-testing by binary nonlocal XOR games}, booktitle = {8th Conference on the Theory of Quantum Computation, Communication and Cryptography, TQC 2013}, volume = {22}, year = {2013}, pages = {254{\textendash}262}, publisher = {Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing}, organization = {Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing}, abstract = {

Self-testing a quantum apparatus means verifying the existence of a certain quantum state as well as the effect of the associated measuring devices based only on the statistics of the measurement outcomes. Robust (i.e., error-tolerant) self-testing quantum apparatuses are critical building blocks for quantum cryptographic protocols that rely on imperfect or untrusted devices. We devise a general scheme for proving optimal robust self-testing properties for tests based on nonlocal binary XOR games. We offer some simplified proofs of known results on self-testing, and also prove some new results.

}, keywords = {nonlocal games, quantum cryptography, Random number generation, Self-testing}, doi = {10.4230/LIPIcs.TQC.2013.254}, author = {Carl Miller and Yaoyun Shi} } @article {1442, title = {Optimal Perfect Distinguishability between Unitaries and Quantum Operations }, year = {2010}, month = {2010/10/12}, abstract = { We study optimal perfect distinguishability between a unitary and a general quantum operation. In 2-dimensional case we provide a simple sufficient and necessary condition for sequential perfect distinguishability and an analytical formula of optimal query time. We extend the sequential condition to general d-dimensional case. Meanwhile, we provide an upper bound and a lower bound for optimal sequential query time. In the process a new iterative method is given, the most notable innovation of which is its independence to auxiliary systems or entanglement. Following the idea, we further obtain an upper bound and a lower bound of (entanglement-assisted) q-maximal fidelities between a unitary and a quantum operation. Thus by the recursion in [1] an upper bound and a lower bound for optimal general perfect discrimination are achieved. Finally our lower bound result can be extended to the case of arbitrary two quantum operations. }, url = {http://arxiv.org/abs/1010.2298v1}, author = {Cheng Lu and Jianxin Chen and Runyao Duan} } @article {1164, title = {Optimal light storage in atomic vapor}, journal = {Physical Review A}, volume = {78}, year = {2008}, month = {2008/8/1}, abstract = { We study procedures for the optimization of efficiency of light storage and retrieval based on the dynamic form of electromagnetically induced transparency (EIT) in warm Rb vapor. We present a detailed analysis of two recently demonstrated optimization protocols: a time-reversal-based iteration procedure, which finds the optimal input signal pulse shape for any given control field, and a procedure based on the calculation of an optimal control field for any given signal pulse shape. We verify that the two procedures are consistent with each other, and that they both independently achieve the maximum memory efficiency for any given optical depth. We observe good agreement with theoretical predictions for moderate optical depths (<25), while at higher optical depths the experimental efficiency falls below the theoretically predicted values. We identify possible effects responsible for this reduction in memory efficiency. }, doi = {10.1103/PhysRevA.78.023801}, url = {http://arxiv.org/abs/0805.3348v1}, author = {Nathaniel B. Phillips and Alexey V. Gorshkov and Irina Novikova} } @article {1163, title = {Optimal light storage with full pulse shape control}, journal = {Physical Review A}, volume = {78}, year = {2008}, month = {2008/8/20}, abstract = { We experimentally demonstrate optimal storage and retrieval of light pulses of arbitrary shape in atomic ensembles. By shaping auxiliary control pulses, we attain efficiencies approaching the fundamental limit and achieve precise retrieval into any predetermined temporal profile. Our techniques, demonstrated in warm Rb vapor, are applicable to a wide range of systems and protocols. As an example, we present their potential application to the creation of optical time-bin qubits and to controlled partial retrieval. }, doi = {10.1103/PhysRevA.78.021802}, url = {http://arxiv.org/abs/0805.1927v1}, author = {Irina Novikova and Nathaniel B. Phillips and Alexey V. Gorshkov} } @article {1853, title = {Optimal light storage with full pulse-shape control}, journal = {Phys. Rev. A}, volume = {78}, year = {2008}, pages = {021802(R)}, url = {http://link.aps.org/abstract/PRA/v78/e021802/}, author = {Novikova, I and Phillips, N B and Alexey V. Gorshkov} } @article {1854, title = {Optimizing Slow and Stored Light for Multidisciplinary Applications}, journal = {Proc. SPIE}, volume = {6904}, year = {2008}, pages = {69040C}, url = {http://spie.org/x648.xml?product_id=772216\&Search_Origin=QuickSearch\&Search_Results_URL=http://spie.org/x1636.xml\&Alternate_URL=http://spie.org/x18509.xml\&Alternate_URL_Name=timeframe\&Alternate_URL_Value=Exhibitors\&UseJavascript=1\&Please_Wait_URL=http://s}, author = {Klein, M and Xiao, Y and Alexey V. Gorshkov and M Hohensee and C D Leung and M R Browning and Phillips, D F and Novikova, I and Walsworth, R L} } @article {1203, title = {Optimal control of light pulse storage and retrieval}, journal = {Physical Review Letters}, volume = {98}, year = {2007}, month = {2007/6/15}, abstract = { We demonstrate experimentally a procedure to obtain the maximum efficiency for the storage and retrieval of light pulses in atomic media. The procedure uses time reversal to obtain optimal input signal pulse-shapes. Experimental results in warm Rb vapor are in good agreement with theoretical predictions and demonstrate a substantial improvement of efficiency. This optimization procedure is applicable to a wide range of systems. }, doi = {10.1103/PhysRevLett.98.243602}, url = {http://arxiv.org/abs/quant-ph/0702266v1}, author = {Irina Novikova and Alexey V. Gorshkov and David F. Phillips and Anders S. Sorensen and Mikhail D. Lukin and Ronald L. Walsworth} } @article {1217, title = {Optimal quantum adversary lower bounds for ordered search}, year = {2007}, month = {2007/08/24}, abstract = { The goal of the ordered search problem is to find a particular item in an ordered list of n items. Using the adversary method, Hoyer, Neerbek, and Shi proved a quantum lower bound for this problem of (1/pi) ln n + Theta(1). Here, we find the exact value of the best possible quantum adversary lower bound for a symmetrized version of ordered search (whose query complexity differs from that of the original problem by at most 1). Thus we show that the best lower bound for ordered search that can be proved by the adversary method is (1/pi) ln n + O(1). Furthermore, we show that this remains true for the generalized adversary method allowing negative weights. }, doi = {10.1007/978-3-540-70575-8_71}, url = {http://arxiv.org/abs/0708.3396v1}, author = {Andrew M. Childs and Troy Lee} } @article {1857, title = {Optimization of slow and stored light in atomic vapor}, journal = {Proc. SPIE}, volume = {6482}, year = {2007}, pages = {64820M}, url = {http://spiedigitallibrary.aip.org/getabs/servlet/GetabsServlet?prog=normal\&id=PSISDG00648200000164820M000001\&idtype=cvips\&gifs=Yes\&bproc=volrange\&scode=6400\%20-\%206499}, author = {Novikova, I and Alexey V. Gorshkov and Phillips, D F and Xiao, Y and Klein, M and Walsworth, R L} } @article {1239, title = {Optimal measurements for the dihedral hidden subgroup problem}, year = {2005}, month = {2005/01/10}, abstract = { We consider the dihedral hidden subgroup problem as the problem of distinguishing hidden subgroup states. We show that the optimal measurement for solving this problem is the so-called pretty good measurement. We then prove that the success probability of this measurement exhibits a sharp threshold as a function of the density nu=k/log N, where k is the number of copies of the hidden subgroup state and 2N is the order of the dihedral group. In particular, for nu<1 the optimal measurement (and hence any measurement) identifies the hidden subgroup with a probability that is exponentially small in log N, while for nu>1 the optimal measurement identifies the hidden subgroup with a probability of order unity. Thus the dihedral group provides an example of a group G for which Omega(log|G|) hidden subgroup states are necessary to solve the hidden subgroup problem. We also consider the optimal measurement for determining a single bit of the answer, and show that it exhibits the same threshold. Finally, we consider implementing the optimal measurement by a quantum circuit, and thereby establish further connections between the dihedral hidden subgroup problem and average case subset sum problems. In particular, we show that an efficient quantum algorithm for a restricted version of the optimal measurement would imply an efficient quantum algorithm for the subset sum problem, and conversely, that the ability to quantum sample from subset sum solutions allows one to implement the optimal measurement. }, url = {http://arxiv.org/abs/quant-ph/0501044v2}, author = {Dave Bacon and Andrew M. Childs and Wim van Dam} } @article {1407, title = {Optimizing the fast Rydberg quantum gate}, journal = {Physical Review A}, volume = {67}, year = {2003}, month = {2003/4/17}, abstract = { The fast phase gate scheme, in which the qubits are atoms confined in sites of an optical lattice, and gate operations are mediated by excitation of Rydberg states, was proposed by Jaksch et al. Phys. Rev. Lett. 85, 2208 (2000). A potential source of decoherence in this system derives from motional heating, which occurs if the ground and Rydberg states of the atom move in different optical lattice potentials. We propose to minimize this effect by choosing the lattice photon frequency \omega so that the ground and Rydberg states have the same frequency-dependent polarizability \alpha(omega). The results are presented for the case of Rb. }, doi = {10.1103/PhysRevA.67.040303}, url = {http://arxiv.org/abs/quant-ph/0212081v1}, author = {M. S. Safronova and Carl J. Williams and Charles W. Clark} }