Due to their strong and tunable interactions, Rydberg atoms can be used to realize fast two-qubit entangling gates. We propose a generalization of a generic two-qubit Rydberg-blockade gate to multi-qubit Rydberg-blockade gates which involve both many control qubits and many target qubits simultaneously. This is achieved by using strong microwave fields to dress nearby Rydberg states, leading to asymmetric blockade in which control-target interactions are much stronger than control-control and target-target interactions. The implementation of these multi-qubit gates can drastically simplify both quantum algorithms and state preparation. To illustrate this, we show that a 25-atom GHZ state can be created using only three gates with an error of 7.8%.

1 aYoung, Jeremy, T.1 aBienias, Przemyslaw1 aBelyansky, Ron1 aKaufman, Adam, M.1 aGorshkov, Alexey, V. uhttps://arxiv.org/abs/2006.02486