Clifford-Deformed Surface Codes

TitleClifford-Deformed Surface Codes
Publication TypeJournal Article
Year of Publication2024
AuthorsDua, A, Kubica, A, Jiang, L, Flammia, ST, Gullans, M
JournalPRX Quantum
Date Published3/19/2024

Various realizations of Kitaev's surface code perform surprisingly well for biased Pauli noise. Attracted by these potential gains, we study the performance of Clifford-deformed surface codes (CDSCs) obtained from the surface code by applying single-qubit Clifford operators. We first analyze CDSCs on the 3×3 square lattice and find that, depending on the noise bias, their logical error rates can differ by orders of magnitude. To explain the observed behavior, we introduce the effective distance d′, which reduces to the standard distance for unbiased noise. To study CDSC performance in the thermodynamic limit, we focus on random CDSCs. Using the statistical mechanical mapping for quantum codes, we uncover a phase diagram that describes random CDSC families with 50% threshold at infinite bias. In the high-threshold region, we further demonstrate that typical code realizations outperform the thresholds and subthreshold logical error rates, at finite bias, of the best-known translationally invariant codes. We demonstrate the practical relevance of these random CDSC families by constructing a translation-invariant CDSC belonging to a high-performance random CDSC family. We also show that our translation-invariant CDSC outperforms well-known translation-invariant CDSCs such as the XZZX and XY codes.