Skip to main content

Constant-sized correlations are sufficient to robustly self-test maximally entangled states with unbounded dimension

Abstract

We show that for any prime odd integer d, there exists a correlation of size Θ(r) that can robustly self-test a maximally entangled state of dimension 4d−4, where r is the smallest multiplicative generator of Z∗d. The construction of the correlation uses the embedding procedure proposed by Slofstra (Forum of Mathematics, Pi. Vol. 7, (2019)). Since there are infinitely many prime numbers whose smallest multiplicative generator is at most 5 (M. Murty The Mathematical Intelligencer 10.4 (1988)), our result implies that constant-sized correlations are sufficient for robust self-testing of maximally entangled states with unbounded local dimension.

Publication Details

Authors
Publication Type
Journal Article
Year of Publication
2022
Journal
Quantum
Volume
6
Date Published
01/2022
Pagination
614