Information-Theoretic Privacy in Distributed Average Consensus

TitleInformation-Theoretic Privacy in Distributed Average Consensus
Publication TypeJournal Article
Year of Publication2018
AuthorsGupta, N, Katz, J, Chopra, N
Abstract

We propose an asynchronous distributed average consensus algorithm that guarantees information-theoretic privacy of honest agents' inputs against colluding semi-honest (passively adversarial) agents, as long as the set of colluding semi-honest agents is not a vertex cut in the underlying communication network. This implies that a network with (t+1)-connectivity guarantees information-theoretic privacy of honest agents' inputs against any t colluding semi-honest agents. The proposed protocol is formed by composing a distributed privacy mechanism we provide with any (non-private) distributed average consensus algorithm. 

URLhttps://arxiv.org/abs/1809.01794