Title | Information-Theoretic Privacy in Distributed Average Consensus |
Publication Type | Journal Article |
Year of Publication | 2018 |
Authors | Gupta, N, Katz, J, Chopra, N |
Abstract | We propose an asynchronous distributed average consensus algorithm that guarantees information-theoretic privacy of honest agents' inputs against colluding semi-honest (passively adversarial) agents, as long as the set of colluding semi-honest agents is not a vertex cut in the underlying communication network. This implies that a network with (t+1)-connectivity guarantees information-theoretic privacy of honest agents' inputs against any t colluding semi-honest agents. The proposed protocol is formed by composing a distributed privacy mechanism we provide with any (non-private) distributed average consensus algorithm. |
URL | https://arxiv.org/abs/1809.01794 |