Multi-product Hamiltonian simulation with explicit commutator scaling

TitleMulti-product Hamiltonian simulation with explicit commutator scaling
Publication TypeJournal Article
Year of Publication2024
AuthorsAftab, J, An, D, Trivisa, K
Date Published3/13/2024
Abstract

The well-conditioned multi-product formula (MPF), proposed by [Low, Kliuchnikov, and Wiebe, 2019], is a simple high-order time-independent Hamiltonian simulation algorithm that implements a linear combination of standard product formulas of low order. While the MPF aims to simultaneously exploit commutator scaling among Hamiltonians and achieve near-optimal time and precision dependence, its lack of a rigorous error bound on the nested commutators renders its practical advantage ambiguous. In this work, we conduct a rigorous complexity analysis of the well-conditioned MPF, demonstrating explicit commutator scaling and near-optimal time and precision dependence at the same time. Using our improved complexity analysis, we present several applications of practical interest where the MPF based on a second-order product formula can achieve a polynomial speedup in both system size and evolution time, as well as an exponential speedup in precision, compared to second-order and even higher-order product formulas. Compared to post-Trotter methods, the MPF based on a second-order product formula can achieve polynomially better scaling in system size, with only poly-logarithmic overhead in evolution time and precision.

URLhttps://arxiv.org/abs/2403.08922