Publications

Export 1312 results:
Author Title Type [ Year(Asc)]
Filters: Filter is   [Clear All Filters]
2022
Y. Zhou, Xiao, B., Da Li, M. -, Zhao, Q., Yuan, Z. - S., Ma, X., and Pan, J. - W., A scheme to create and verify scalable entanglement in optical lattice, npj Quantum Information, vol. 8, 2022.
A. Vrajitoarea, Belyansky, R., Lundgren, R., Whitsitt, S., Gorshkov, A. V., and Houck, A. A., Ultrastrong light-matter interaction in a photonic crystal, 2022.
L. Lewis, Zhu, D., Gheorghiu, A., Noel, C., Katz, O., Harraz, B., Wang, Q., Risinger, A., Feng, L., Biswas, D., Egan, L., Vidick, T., Cetina, M., and Monroe, C., Experimental Implementation of an Efficient Test of Quantumness, 2022.
Z. - P. Cian, Hafezi, M., and Barkeshli, M., Extracting Wilson loop operators and fractional statistics from a single bulk ground state, 2022.
T. J. Sewell and White, C. David, Mana and thermalization: Probing the feasibility of near-Clifford Hamiltonian simulation, Physical Review B, vol. 106, 2022.
F. Wilde, Kshetrimayum, A., Roth, I., Hangleiter, D., Sweke, R., and Eisert, J., Scalably learning quantum many-body Hamiltonians from dynamical data, 2022.
A. A. Lasek, Barnes, C. H. W., and Ferrus, T., Isolation and manipulation of a single-donor detector in a silicon quantum dot, Phys. Rev. B, vol. 106, p. 125423, 2022.
H. - Y. Huang, Kueng, R., Torlai, G., Albert, V. V., and Preskill, J., Provably efficient machine learning for quantum many-body problems, Science, vol. 377, 2022.
K. Shi, Herrman, R., Shaydulin, R., Chakrabarti, S., Pistoia, M., and Larson, J., Multi-Angle QAOA Does Not Always Need All Its Angles, 2022.
T. J. Stavenger, Crane, E., Smith, K., Kang, C. T., Girvin, S. M., and Wiebe, N., Bosonic Qiskit, 2022.
Y. Tong, Albert, V. V., McClean, J. R., Preskill, J., and Su, Y., Provably accurate simulation of gauge theories and bosonic systems, Quantum, vol. 6, p. 816, 2022.
N. Shettell, Centrone, F., and García-Pintos, L. Pedro, Bounding the Minimum Time of a Quantum Measurement, 2022.
O. Katz, Feng, L., Risinger, A., Monroe, C., and Cetina, M., Demonstration of three- and four-body interactions between trapped-ion spins, 2022.
J. Wildeboer, Langlett, C. M., Yang, Z. - C., Gorshkov, A. V., Iadecola, T., and Xu, S., Quantum Many-Body Scars from Einstein-Podolsky-Rosen States in Bilayer Systems, 2022.
R. De Viti, Sheff, I., Glaeser, N., Dinis, B., Rodrigues, R., Katz, J., Bhattacharjee, B., Hithnawi, A., Garg, D., and Druschel, P., CoVault: A Secure Analytics Platform, 2022.
T. Schuster, Kobrin, B., Gao, P., Cong, I., Khabiboulline, E. T., Linke, N. M., Lukin, M. D., Monroe, C., Yoshida, B., and Yao, N. Y., Many-Body Quantum Teleportation via Operator Spreading in the Traversable Wormhole Protocol, Physical Review X, vol. 12, 2022.
O. Katz, Cetina, M., and Monroe, C., N-body interactions between trapped ion qubits via spin-dependent squeezing, Physical Review Letters, vol. 129, 2022.
G. Alagic, Bai, C., Katz, J., Majenz, C., and Struck, P., Post-Quantum Security of the (Tweakable) FX Construction, and Applications, 2022.
I. H. Kim, Shi, B., Kato, K., and Albert, V. V., Modular commutator in gapped quantum many-body systems, Physical Review B, vol. 106, 2022.
A. W. Young, Eckner, W. J., Schine, N., Childs, A. M., and Kaufman, A. M., Tweezer-programmable 2D quantum walks in a Hubbard-regime lattice, Science, vol. 377, no. 6608, pp. 885-889, 2022.
M. Barkeshli, Chen, Y. - A., Huang, S. - J., Kobayashi, R., Tantivasadakarn, N., and Zhu, G., Codimension-2 defects and higher symmetries in (3+1)D topological phases, 2022.
C. L. Baldwin, Ehrenberg, A., Guo, A. Y., and Gorshkov, A. V., Disordered Lieb-Robinson bounds in one dimension, 2022.
M. Hinsche, Ioannou, M., Nietner, A., Haferkamp, J., Quek, Y., Hangleiter, D., Seifert, J. - P., Eisert, J., and Sweke, R., A single T-gate makes distribution learning hard, 2022.
G. Alagic, Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J., Lichtinger, J., Miller, C., Moody, D., Peralta, R., Perlner, R., and Robinson, A., Status Report on the Third Round of the NIST Post-Quantum Cryptography Standardization Process, NIST, 2022.
D. Hangleiter and Eisert, J., Computational advantage of quantum random sampling, 2022.