D. Grier, Pashayan, H., and Schaeffer, L., Sample-optimal classical shadows for pure states, 2022.
L. Feng, Katz, O., Haack, C., Maghrebi, M., Gorshkov, A. V., Gong, Z., Cetina, M., and Monroe, C., Continuous Symmetry Breaking in a Trapped-Ion Spin Chain, 2022.
L. Li, Zhu, M., Lee, Y., Chang, L., and Wu, X., Quantum Natural Proof: A New Perspective of Hybrid Quantum-Classical Program Verification, 2022.
V. V. Albert, Bosonic coding: introduction and use cases, 2022.
P. C. S. Costa, An, D., Sanders, Y. R., Su, Y., Babbush, R., and Berry, D. W., Optimal scaling quantum linear systems solver via discrete adiabatic theorem, PRX Quantum, vol. 3, no. 4, p. 040303, 2022.
D. Gottesman, Opportunities and Challenges in Fault-Tolerant Quantum Computation, 2022.
A. Y. Guo, Deshpande, A., Chu, S. - K., Eldredge, Z., Bienias, P., Devulapalli, D., Su, Y., Childs, A. M., and Gorshkov, A. V., Implementing a Fast Unbounded Quantum Fanout Gate Using Power-Law Interactions, Phys. Rev. Research, vol. 4, no. L042016, 2022.
Y. Alnawakhtha, Mantri, A., Miller, C., and Wang, D., Lattice-Based Quantum Advantage from Rotated Measurements, 2022.
Y. - A. Chen, Gorshkov, A. V., and Xu, Y., Error-correcting codes for fermionic quantum simulation, 2022.
A. M. Childs, Li, T., Liu, J. - P., Wang, C., and Zhang, R., Quantum Algorithms for Sampling Log-Concave Distributions and Estimating Normalizing Constants, Advances in Neural Information Processing Systems (NeurIPS 2022), vol. 35, no. 23205, 2022.
A. Singh Arora, Coladangelo, A., Coudron, M., Gheorghiu, A., Singh, U., and Waldner, H., Quantum Depth in the Random Oracle Model, 2022.
A. M. Childs, Kothari, R., Kovacs-Deak, M., Sundaram, A., and Wang, D., Quantum divide and conquer, 2022.
M. - C. Hsu, Kuo, E. - J., Yu, W. - H., Cai, J. - F., and Hsieh, M. - H., Quantum state tomography via non-convex Riemannian gradient descent, 2022.
A. Deshpande, Mehta, A., Vincent, T., Quesada, N., Hinsche, M., Ioannou, M., Madsen, L., Lavoie, J., Qi, H., Eisert, J., Hangleiter, D., Fefferman, B., and Dhand, I., Quantum computational advantage via high-dimensional Gaussian boson sampling, Science Advances, vol. 8, p. eabi7894, 2022.
H. Fu, Wang, D., and Zhao, Q., Computational self-testing of multi-qubit states and measurements, 2022.
M. Van Regemortel, Shtanko, O., García-Pintos, L. Pedro, Deshpande, A., Dehghani, H., Gorshkov, A. V., and Hafezi, M., Monitoring-induced Entanglement Entropy and Sampling Complexity, 2022.
T. Sewell, Bapat, A., and Jordan, S., Estimating gate complexities for the site-by-site preparation of fermionic vacua, 2022.
D. Wu, Zhao, Q., Wang, C., Huang, L., Jiang, Y. - F., Bai, B., Zhou, Y., Gu, X. - M., Liu, F. - M., Mao, Y. - Q., Sun, Q. - C., Chen, M. - C., Zhang, J., Peng, C. - Z., Zhu, X. - B., Zhang, Q., Lu, C. - Y., and Pan, J. - W., Closing the Locality and Detection Loopholes in Multiparticle Entanglement Self-Testing, Physical Review Letters, vol. 128, no. 25, p. 250401, 2022.
Z. A. Benson, Peshkov, A., Halpern, N. Yunger, Richardson, D. C., and Losert, W., Experimentally Measuring Rolling and Sliding in Three-Dimensional Dense Granular Packings, Phys. Rev. Lett., vol. 129, no. 4, p. 048001, 2022.
J. Bringewatt and Brady, L. T., Simultaneous Stoquasticity, Phys. Rev. A, vol. 105, no. 062601, 2022.
S. Guo, Koh, S. M., Fritsch, A. R., Spielman, I. B., and Zwolak, J. P., Combining machine learning with physics: A framework for tracking and sorting multiple dark solitons, Phys. Rev. Research, vol. 4, p. 023163 , 2022.
A. R. Fritsch, Guo, S., Koh, S. M., Spielman, I. B., and Zwolak, J. P., Dark Solitons in Bose-Einstein Condensates: A Dataset for Many-body Physics Research, 2022.
C. J. Cao and Lackey, B., Quantum Lego: Building Quantum Error Correction Codes from Tensor Networks, PRX Quantum, vol. 3, no. 2, p. 020332, 2022.
Y. - A. Chen, Childs, A. M., Hafezi, M., Jiang, Z., Kim, H., and Xu, Y., Efficient Product Formulas for Commutators and Applications to Quantum Simulation, Physical Review Research, vol. 4, 2022.
B. J. Weber, Kalantre, S. S., McJunkin, T., Taylor, J. M., and Zwolak, J. P., Theoretical bounds on data requirements for the ray-based classification, SN Comput. Sci., vol. 3, no. 57, 2022.